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1 Stochastic Integration With Irregular Functions

1.1 Integration of rough deterministic functions

Our ultimate goal is to study stochastic PDEs, but before that, we need to study certain
developments in studying stochastic ODEs from the 90s. For now, we are reviewing the
stochastic differential equation

dx

dt
= u(x, t) + σ(x, t)ξ(t),

where ξ(t) is “white noise.” As we discussed last time, we may make sense of this equation
if we have a good candidate for ∫ t

0
f(s) dg(s)

if f and g are as bad as Brownian motion. That is, we need to be able to deal with f, g ∈ Cα
for α < 1/2. Last time, we learned that h(t) =

∫ t
0 f dg = limn→∞

∑2n−1
j=0 f(sj)(g(tj+1) −

g(tj)) with sj ∈ [tj , tj+1] and tj = t · 2−n, provided that f ∈ Cα and g ∈ Cβ with α+β > 1.
Alternatively, we can state the following result of Young:

Theorem 1.1. Given f ∈ Cα, g ∈ Cβ with α + β > 1, there exists a unique h ∈ Cβ such
that h(0) = 0 and

|h(t)− h(s)− f(s)(g(t)− g(s))| ≤ [f ]α[g]β|t− s|α+β.

The idea is that we can approximate g by smooth functions to compute the integral, and
if we keep doing this with better approximations, we will get the same answer, regardless
of our choice of approximation.

An equivalent way to think about this is if A : C1 × C1 → C0 by A (f,G) = fG′, then

this A has a continuous extension to Â : Cα × Cγ → Cγ with α+ γ > 0. Here, γ = β − 1.
This gives us a satisfactory candidate for fg′, where f ∈ Cα, g ∈ Cβ, α + β > 1. The
Radon-Nikodym theorem says that if a distribution is a measure, then we can multiply
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it by a function and we get another measure; this, by comparison says we can multiply a
distribution (which can be worse than a measure) by a function as long as the function has
enough regularity.

As we mentioned last time, Young’s integral cannot be used for our equation. Imagine
that we have f ∈ Cα, g ∈ Cβ, and α + β ≤ 1 with α, β ∈ (0, 1). What can be said about
fg′? We may attempt to make sense of it by replacing g with a smooth approximation gε
and examine limε→0 fg

′
ε. It turns out that the limit may not exist or the limit depends on

the approximation.
In this context, let us examine the following question: Given Hölder f, g, consider the

set H of h such that h(0) = 0 and for some C,

|h(t)− h(s)− f(s)(g(t)− g(s))| ≤ C|t− s|α+β.

Observe that if h, h̃ ∈H , then h− h̃ ∈ Cα+β. In fact, given any h0 ∈H ,

H = {h0 + k : k(0) = 0, k ∈ Cα+β}.

Theorem 1.2 (Lyons-Victoire, 1999). H 6= ∅ always.

The multidimensional version of this theorem was proved by Martin Hairer in 2013 or
so. In other words, if f ∈ Cα(Rd), g ∈ Cβ(Rd), then we have at least one candidate for
“f∇g” (a function multiplied by a distribution). This is basically a distribution that near
x, is “close” to f(x)∇g.

1.2 Integration of functions of Brownian motion

How does stochastic calculus fit into this framework? Let’s go back to our original problem

ẋ = u(x, t) + σ(x, t)ξ, ξ = Ḃ.

Our first attempt is to make sense of
∫ t
0 F (B(s)) dB(s).

It is not hard to show (using the strong law of large numbers) that

lim
n→∞

2n−1∑
j=0

[B(tj+1)−B(tj)]
2 = t

almost surely. Observe that

∫ t

0
B dB ≈


∑

iB(ti)(B(ti+1)−B(ti)) Itô (I)∑
iB(ti+1)(B(ti+1)−B(ti)) backward (II)∑
i
B(ti+1)+B(ti)

2 (B(ti+1)−B(ti)) Stratonovich (III).

Observe that II − I → t as n→∞.
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Itô’s candidate was to define∫ t

0
F (B(s)) dB(s) = lim

n→∞

∑
i

F (B(ti))(B(ti+1)−B(ti)),

where the limit exists in L2(P). This is a fairly weak type of convergence, as opposed to
Young’s integral. Indeed, B 7→ I (B) =

∫ 1
0 F (B(s)) dB(s) is a only a measurable map and

is not continuous. This is an unsatisfactory feature of Itô’s theory.
Lyons made a very important observation, namely if we have a candidate for B(s, t) =∫ t

s (B(θ) − B(s)) ⊗ dB(θ) (where the tensor denotes making a matrix out of this), then

the map (B,B) 7→ I (B,B) =
∫ t
0 F (B) dB is now continuous. (Though B(s, t) must satisfy

some algebraic equations known as Chen’s relations.)

For this theory, we can replace B with any function (or possibly random rough path) that
is in Cα, provided that α > 1/3.

1.3 The stochastic heat equation

We are now ready to discuss stochastic partial differential equations.

Example 1.1 (Stochastic heat equation). The stochastic heat equation (SHE) is

ut = ∆u+ ξ,

where ξ is white noise in (x, t). By this, we mean that ξ is a Gaussian process, E[ξ(x, t)] = 0,
and E[ξ(x, t)ξ(y, s)] = δ0(x − y, t − s) (to be formally defined later). One can show that
ξ ∈ Cα for any α < −d/2 − 1. (Here, we are better off to use a “parabolic” metric, i.e.

|(x, t)− (y, s)|par = |x− y|+ |t− s|1/2. Then Hölder means |f(x,y)−f(y,s)||(x,t)−(y,s)|αpar
.)

Because of “parabolic regularity” (which we will discuss later), we expect u ∈ C(−d/2+1)− .
For example, when d = 1, u ∈ C1/2− in the space variable, and it turns out that u ∈ C1/4−
in the time variable. In higher dimensions, this will not be a function; we have to live with
distributions. We can make sense of this PDE by first using Duhamel to write

u(x, t) =

∫
p(x− y, t)u0(y) dy +

∫ t

0

∫
p(x− y, t− s) ξ(y, s) dy ds︸ ︷︷ ︸

W (dy,ds)

,
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where p is a fundamental solution of the heat equation and W (dy, ds) is known as “cylin-
drical Brownian motion.”
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